常用公式

sec2a=tan2a+1sec^2a= tan^2a+1

csc2a=cot2a+1csc^2a= cot^2a+1



常用积分公式

lnxdx=xlnxx+C\int lnx dx=xlnx-x+C

tanxdx=lncosx+C\int tanx dx=-ln|cos x|+C

secxdx=lnsecx+tanx+C\int secx dx=ln |sec x +tan x|+C

cscxdx=lncscxcotx+C\int cscx dx=ln |csc x -cot x|+C

dxa2+x2=1aarctan(xa)+C\int \frac{dx}{a^2+x^2}=\frac{1}{a}\arctan(\frac{x}{a})+C

dxa2x2=12alna+xax+C\int \frac{dx}{a^2-x^2}=\frac{1}{2a}\ln|\frac{a+x}{a-x}|+C

dxa2x2=arcsinxa+C\int \frac{dx}{\sqrt{a^2-x^2}}=arcsin\frac{x}{a}+C

dxx2±a2=lnx+x2±a2+C\int \frac{dx}{\sqrt{x^2\pm a^2}}=\ln|x+\sqrt{x^2\pm a^2}|+C

sec2xdx=tanx+C\int sec^2xdx=tanx+C

csc2xdx=cotx+C\int csc^2xdx=-cotx+C

secxtanxdx=secx+C\int secxtanxdx=secx+C

cscxcotxdx=cscx+C\int cscxcotxdx=-cscx+C

axdx=axlna+C\int a^xdx=\frac{a^x}{lna}+C

exdx=ex+C\int e^xdx=e^x+C



常用微分公式

三角积化和差公式

sinacosb=12[sin(a+b)+sin(ab)]sina cosb = \frac{1}{2}[sin(a+b)+sin(a-b)]

cosasinb=12[sin(a+b)sin(ab)]cosa sinb = \frac{1}{2}[sin(a+b)-sin(a-b)]

cosacosb=12[cos(a+b)+cos(ab)]cosa cosb = \frac{1}{2}[cos(a+b)+cos(a-b)]

sinasinb=12[cos(a+b)cos(ab)]sina sinb = -\frac{1}{2}[cos(a+b)-cos(a-b)]

sin(a±b)=sinacosb±cosasinbsin(a\pm b) = sinacosb\pm cosasinb

cos(a±b)=cosacosb+sinasinbcos(a\pm b) = cosacosb-+sinasinb


三角函数有理式分式万能公式

令 t=tanx2令 \ t=tan \frac{x}{2}

sinx=2t1t2sin x = \frac{2t}{1-t^2}

cosx=1t21+t2cos x = \frac{1-t^2}{1+t^2}

tanx=2t1t2tan x = \frac{2t}{1-t^2}

dx=21+t2dtdx = \frac{2}{1+t^2}dt


幂级数展开常用公式

The End.